Copied to
clipboard

G = C42.251C23order 128 = 27

112nd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.251C23, C4⋊C4.73D4, (C2×C8).189D4, (C2×Q8).62D4, C84Q8.8C2, C81C8.12C2, C4⋊C8.35C22, C42Q16.9C2, C4⋊Q8.72C22, C4.106(C4○D8), C2.15(C8⋊D4), C4.46(C8⋊C22), (C4×C8).217C22, Q8⋊Q8.10C2, C4.SD16.9C2, (C4×Q8).50C22, C4.10D8.13C2, C4.95(C8.C22), C2.17(D4.5D4), C2.13(Q8.D4), C22.212(C4⋊D4), (C2×C4).36(C4○D4), (C2×C4).1286(C2×D4), SmallGroup(128,432)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.251C23
C1C2C22C2×C4C42C4×Q8C84Q8 — C42.251C23
C1C22C42 — C42.251C23
C1C22C42 — C42.251C23
C1C22C22C42 — C42.251C23

Generators and relations for C42.251C23
 G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=ab2, e2=b2, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=a-1c, ece-1=bc, ede-1=a2d >

Subgroups: 152 in 73 conjugacy classes, 32 normal (all characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C81C8, C84Q8, C42Q16, Q8⋊Q8, C4.SD16, C42.251C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, C8.C22, Q8.D4, C8⋊D4, D4.5D4, C42.251C23

Character table of C42.251C23

 class 12A2B2C4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J
 size 1111222248816164444888888
ρ111111111111111111111111    trivial
ρ211111111111-11-1-1-1-11-11-1-1-1    linear of order 2
ρ3111111111-1-1-11-1-1-1-1-11-1111    linear of order 2
ρ4111111111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ511111111111-1-11111-1-1-111-1    linear of order 2
ρ6111111111111-1-1-1-1-1-11-1-1-11    linear of order 2
ρ7111111111-1-11-1-1-1-1-11-1111-1    linear of order 2
ρ8111111111-1-1-1-11111111-1-11    linear of order 2
ρ92222-22-22-22-2000000000000    orthogonal lifted from D4
ρ102222-22-22-2-22000000000000    orthogonal lifted from D4
ρ1122222-22-2-200002-2-22000000    orthogonal lifted from D4
ρ1222222-22-2-20000-222-2000000    orthogonal lifted from D4
ρ132222-2-2-2-22000000000002i-2i0    complex lifted from C4○D4
ρ142222-2-2-2-2200000000000-2i2i0    complex lifted from C4○D4
ρ152-2-22-2020000000-2i2i02--2-200-2    complex lifted from C4○D8
ρ162-2-22-20200000002i-2i0-2--2200-2    complex lifted from C4○D8
ρ172-2-22-2020000000-2i2i0-2-2200--2    complex lifted from C4○D8
ρ182-2-22-20200000002i-2i02-2-200--2    complex lifted from C4○D8
ρ194-44-40-404000000000000000    orthogonal lifted from C8⋊C22
ρ204-4-4440-40000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ214-44-4040-4000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2244-4-40000000002200-22000000    symplectic lifted from D4.5D4, Schur index 2
ρ2344-4-4000000000-220022000000    symplectic lifted from D4.5D4, Schur index 2

Smallest permutation representation of C42.251C23
Regular action on 128 points
Generators in S128
(1 56 5 52)(2 49 6 53)(3 50 7 54)(4 51 8 55)(9 121 13 125)(10 122 14 126)(11 123 15 127)(12 124 16 128)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)(33 42 37 46)(34 43 38 47)(35 44 39 48)(36 45 40 41)(57 98 61 102)(58 99 62 103)(59 100 63 104)(60 101 64 97)(65 80 69 76)(66 73 70 77)(67 74 71 78)(68 75 72 79)(81 107 85 111)(82 108 86 112)(83 109 87 105)(84 110 88 106)(89 120 93 116)(90 113 94 117)(91 114 95 118)(92 115 96 119)
(1 61 54 100)(2 62 55 101)(3 63 56 102)(4 64 49 103)(5 57 50 104)(6 58 51 97)(7 59 52 98)(8 60 53 99)(9 105 127 81)(10 106 128 82)(11 107 121 83)(12 108 122 84)(13 109 123 85)(14 110 124 86)(15 111 125 87)(16 112 126 88)(17 80 25 67)(18 73 26 68)(19 74 27 69)(20 75 28 70)(21 76 29 71)(22 77 30 72)(23 78 31 65)(24 79 32 66)(33 114 48 93)(34 115 41 94)(35 116 42 95)(36 117 43 96)(37 118 44 89)(38 119 45 90)(39 120 46 91)(40 113 47 92)
(1 109 5 105)(2 88 6 84)(3 107 7 111)(4 86 8 82)(9 61 13 57)(10 103 14 99)(11 59 15 63)(12 101 16 97)(17 94 21 90)(18 118 22 114)(19 92 23 96)(20 116 24 120)(25 115 29 119)(26 89 30 93)(27 113 31 117)(28 95 32 91)(33 73 37 77)(34 71 38 67)(35 79 39 75)(36 69 40 65)(41 76 45 80)(42 66 46 70)(43 74 47 78)(44 72 48 68)(49 110 53 106)(50 81 54 85)(51 108 55 112)(52 87 56 83)(58 122 62 126)(60 128 64 124)(98 125 102 121)(100 123 104 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 21 54 29)(2 18 55 26)(3 23 56 31)(4 20 49 28)(5 17 50 25)(6 22 51 30)(7 19 52 27)(8 24 53 32)(9 94 127 115)(10 91 128 120)(11 96 121 117)(12 93 122 114)(13 90 123 119)(14 95 124 116)(15 92 125 113)(16 89 126 118)(33 108 48 84)(34 105 41 81)(35 110 42 86)(36 107 43 83)(37 112 44 88)(38 109 45 85)(39 106 46 82)(40 111 47 87)(57 67 104 80)(58 72 97 77)(59 69 98 74)(60 66 99 79)(61 71 100 76)(62 68 101 73)(63 65 102 78)(64 70 103 75)

G:=sub<Sym(128)| (1,56,5,52)(2,49,6,53)(3,50,7,54)(4,51,8,55)(9,121,13,125)(10,122,14,126)(11,123,15,127)(12,124,16,128)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,42,37,46)(34,43,38,47)(35,44,39,48)(36,45,40,41)(57,98,61,102)(58,99,62,103)(59,100,63,104)(60,101,64,97)(65,80,69,76)(66,73,70,77)(67,74,71,78)(68,75,72,79)(81,107,85,111)(82,108,86,112)(83,109,87,105)(84,110,88,106)(89,120,93,116)(90,113,94,117)(91,114,95,118)(92,115,96,119), (1,61,54,100)(2,62,55,101)(3,63,56,102)(4,64,49,103)(5,57,50,104)(6,58,51,97)(7,59,52,98)(8,60,53,99)(9,105,127,81)(10,106,128,82)(11,107,121,83)(12,108,122,84)(13,109,123,85)(14,110,124,86)(15,111,125,87)(16,112,126,88)(17,80,25,67)(18,73,26,68)(19,74,27,69)(20,75,28,70)(21,76,29,71)(22,77,30,72)(23,78,31,65)(24,79,32,66)(33,114,48,93)(34,115,41,94)(35,116,42,95)(36,117,43,96)(37,118,44,89)(38,119,45,90)(39,120,46,91)(40,113,47,92), (1,109,5,105)(2,88,6,84)(3,107,7,111)(4,86,8,82)(9,61,13,57)(10,103,14,99)(11,59,15,63)(12,101,16,97)(17,94,21,90)(18,118,22,114)(19,92,23,96)(20,116,24,120)(25,115,29,119)(26,89,30,93)(27,113,31,117)(28,95,32,91)(33,73,37,77)(34,71,38,67)(35,79,39,75)(36,69,40,65)(41,76,45,80)(42,66,46,70)(43,74,47,78)(44,72,48,68)(49,110,53,106)(50,81,54,85)(51,108,55,112)(52,87,56,83)(58,122,62,126)(60,128,64,124)(98,125,102,121)(100,123,104,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,54,29)(2,18,55,26)(3,23,56,31)(4,20,49,28)(5,17,50,25)(6,22,51,30)(7,19,52,27)(8,24,53,32)(9,94,127,115)(10,91,128,120)(11,96,121,117)(12,93,122,114)(13,90,123,119)(14,95,124,116)(15,92,125,113)(16,89,126,118)(33,108,48,84)(34,105,41,81)(35,110,42,86)(36,107,43,83)(37,112,44,88)(38,109,45,85)(39,106,46,82)(40,111,47,87)(57,67,104,80)(58,72,97,77)(59,69,98,74)(60,66,99,79)(61,71,100,76)(62,68,101,73)(63,65,102,78)(64,70,103,75)>;

G:=Group( (1,56,5,52)(2,49,6,53)(3,50,7,54)(4,51,8,55)(9,121,13,125)(10,122,14,126)(11,123,15,127)(12,124,16,128)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,42,37,46)(34,43,38,47)(35,44,39,48)(36,45,40,41)(57,98,61,102)(58,99,62,103)(59,100,63,104)(60,101,64,97)(65,80,69,76)(66,73,70,77)(67,74,71,78)(68,75,72,79)(81,107,85,111)(82,108,86,112)(83,109,87,105)(84,110,88,106)(89,120,93,116)(90,113,94,117)(91,114,95,118)(92,115,96,119), (1,61,54,100)(2,62,55,101)(3,63,56,102)(4,64,49,103)(5,57,50,104)(6,58,51,97)(7,59,52,98)(8,60,53,99)(9,105,127,81)(10,106,128,82)(11,107,121,83)(12,108,122,84)(13,109,123,85)(14,110,124,86)(15,111,125,87)(16,112,126,88)(17,80,25,67)(18,73,26,68)(19,74,27,69)(20,75,28,70)(21,76,29,71)(22,77,30,72)(23,78,31,65)(24,79,32,66)(33,114,48,93)(34,115,41,94)(35,116,42,95)(36,117,43,96)(37,118,44,89)(38,119,45,90)(39,120,46,91)(40,113,47,92), (1,109,5,105)(2,88,6,84)(3,107,7,111)(4,86,8,82)(9,61,13,57)(10,103,14,99)(11,59,15,63)(12,101,16,97)(17,94,21,90)(18,118,22,114)(19,92,23,96)(20,116,24,120)(25,115,29,119)(26,89,30,93)(27,113,31,117)(28,95,32,91)(33,73,37,77)(34,71,38,67)(35,79,39,75)(36,69,40,65)(41,76,45,80)(42,66,46,70)(43,74,47,78)(44,72,48,68)(49,110,53,106)(50,81,54,85)(51,108,55,112)(52,87,56,83)(58,122,62,126)(60,128,64,124)(98,125,102,121)(100,123,104,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,54,29)(2,18,55,26)(3,23,56,31)(4,20,49,28)(5,17,50,25)(6,22,51,30)(7,19,52,27)(8,24,53,32)(9,94,127,115)(10,91,128,120)(11,96,121,117)(12,93,122,114)(13,90,123,119)(14,95,124,116)(15,92,125,113)(16,89,126,118)(33,108,48,84)(34,105,41,81)(35,110,42,86)(36,107,43,83)(37,112,44,88)(38,109,45,85)(39,106,46,82)(40,111,47,87)(57,67,104,80)(58,72,97,77)(59,69,98,74)(60,66,99,79)(61,71,100,76)(62,68,101,73)(63,65,102,78)(64,70,103,75) );

G=PermutationGroup([[(1,56,5,52),(2,49,6,53),(3,50,7,54),(4,51,8,55),(9,121,13,125),(10,122,14,126),(11,123,15,127),(12,124,16,128),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26),(33,42,37,46),(34,43,38,47),(35,44,39,48),(36,45,40,41),(57,98,61,102),(58,99,62,103),(59,100,63,104),(60,101,64,97),(65,80,69,76),(66,73,70,77),(67,74,71,78),(68,75,72,79),(81,107,85,111),(82,108,86,112),(83,109,87,105),(84,110,88,106),(89,120,93,116),(90,113,94,117),(91,114,95,118),(92,115,96,119)], [(1,61,54,100),(2,62,55,101),(3,63,56,102),(4,64,49,103),(5,57,50,104),(6,58,51,97),(7,59,52,98),(8,60,53,99),(9,105,127,81),(10,106,128,82),(11,107,121,83),(12,108,122,84),(13,109,123,85),(14,110,124,86),(15,111,125,87),(16,112,126,88),(17,80,25,67),(18,73,26,68),(19,74,27,69),(20,75,28,70),(21,76,29,71),(22,77,30,72),(23,78,31,65),(24,79,32,66),(33,114,48,93),(34,115,41,94),(35,116,42,95),(36,117,43,96),(37,118,44,89),(38,119,45,90),(39,120,46,91),(40,113,47,92)], [(1,109,5,105),(2,88,6,84),(3,107,7,111),(4,86,8,82),(9,61,13,57),(10,103,14,99),(11,59,15,63),(12,101,16,97),(17,94,21,90),(18,118,22,114),(19,92,23,96),(20,116,24,120),(25,115,29,119),(26,89,30,93),(27,113,31,117),(28,95,32,91),(33,73,37,77),(34,71,38,67),(35,79,39,75),(36,69,40,65),(41,76,45,80),(42,66,46,70),(43,74,47,78),(44,72,48,68),(49,110,53,106),(50,81,54,85),(51,108,55,112),(52,87,56,83),(58,122,62,126),(60,128,64,124),(98,125,102,121),(100,123,104,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,21,54,29),(2,18,55,26),(3,23,56,31),(4,20,49,28),(5,17,50,25),(6,22,51,30),(7,19,52,27),(8,24,53,32),(9,94,127,115),(10,91,128,120),(11,96,121,117),(12,93,122,114),(13,90,123,119),(14,95,124,116),(15,92,125,113),(16,89,126,118),(33,108,48,84),(34,105,41,81),(35,110,42,86),(36,107,43,83),(37,112,44,88),(38,109,45,85),(39,106,46,82),(40,111,47,87),(57,67,104,80),(58,72,97,77),(59,69,98,74),(60,66,99,79),(61,71,100,76),(62,68,101,73),(63,65,102,78),(64,70,103,75)]])

Matrix representation of C42.251C23 in GL6(𝔽17)

100000
010000
004000
000400
00125130
0055013
,
1150000
1160000
001000
000100
000010
000001
,
780000
11100000
00314150
001414015
0010143
000133
,
400000
040000
000100
004000
0001604
00414160
,
920000
1080000
001000
0001600
000310
00140016

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,12,5,0,0,0,4,5,5,0,0,0,0,13,0,0,0,0,0,0,13],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,11,0,0,0,0,8,10,0,0,0,0,0,0,3,14,1,0,0,0,14,14,0,1,0,0,15,0,14,3,0,0,0,15,3,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,4,0,0,1,0,16,14,0,0,0,0,0,16,0,0,0,0,4,0],[9,10,0,0,0,0,2,8,0,0,0,0,0,0,1,0,0,14,0,0,0,16,3,0,0,0,0,0,1,0,0,0,0,0,0,16] >;

C42.251C23 in GAP, Magma, Sage, TeX

C_4^2._{251}C_2^3
% in TeX

G:=Group("C4^2.251C2^3");
// GroupNames label

G:=SmallGroup(128,432);
// by ID

G=gap.SmallGroup(128,432);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,512,422,387,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=a*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e^-1=b*c,e*d*e^-1=a^2*d>;
// generators/relations

Export

Character table of C42.251C23 in TeX

׿
×
𝔽